Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.852
Filtrar
1.
Microb Cell Fact ; 23(1): 100, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566071

RESUMO

Surfactin is a cyclic hexalipopeptide compound, nonribosomal synthesized by representatives of the Bacillus subtilis species complex which includes B. subtilis group and its closely related species, such as B. subtilis subsp subtilis, B. subtilis subsp spizizenii, B. subtilis subsp inaquosorum, B. atrophaeus, B. amyloliquefaciens, B. velezensis (Steinke mSystems 6: e00057, 2021) It functions as a biosurfactant and signaling molecule and has antibacterial, antiviral, antitumor, and plant disease resistance properties. The Bacillus lipopeptides play an important role in agriculture, oil recovery, cosmetics, food processing and pharmaceuticals, but the natural yield of surfactin synthesized by Bacillus is low. This paper reviews the regulatory pathways and mechanisms that affect surfactin synthesis and release, highlighting the regulatory genes involved in the transcription of the srfAA-AD operon. The several ways to enhance surfactin production, such as governing expression of the genes involved in synthesis and regulation of surfactin synthesis and transport, removal of competitive pathways, optimization of media, and fermentation conditions were commented. This review will provide a theoretical platform for the systematic genetic modification of high-yielding strains of surfactin.


Assuntos
Bacillus , Bacillus/genética , Bacillus/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Óperon , Fermentação , Lipopeptídeos , Peptídeos Cíclicos
2.
J Agric Food Chem ; 72(14): 8052-8059, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563420

RESUMO

d-Allulose, a functional bulk sweetener, has recently attracted increasing attention because of its low-caloric-ness properties and diverse health effects. d-Allulose is industrially produced by the enzymatic epimerization of d-fructose, which is catalyzed by ketose 3-epimerase (KEase). In this study, the food-grade expression of KEase was studied using Bacillus subtills as the host. Clostridium sp. d-allulose 3-epimerase (Clsp-DAEase) was screened from nine d-allulose-producing KEases, showing better potential for expression in B. subtills WB600. Promoter-based transcriptional regulation and N-terminal coding sequence (NCS)-based translational regulation were studied to enhance the DAEase expression level. In addition, the synergistic effect of promoter and NCS on the Clsp-DAEase expression was studied. Finally, the strain with the combination of a PHapII promoter and gln A-Up NCS was selected as the best Clsp-DAEase-producing strain. It efficiently produced Clsp-DAEase with a total activity of 333.2 and 1860.6 U/mL by shake-flask and fed-batch cultivations, respectively.


Assuntos
Bacillus subtilis , Racemases e Epimerases , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Frutose/metabolismo , Cetoses
3.
Microb Cell Fact ; 23(1): 114, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641799

RESUMO

BACKGROUND: Isoquercitrin (quercetin-3-O-ß-D-glucopyranoside) has exhibited promising therapeutic potentials as cardioprotective, anti-diabetic, anti-cancer, and anti-viral agents. However, its structural complexity and limited natural abundance make both bulk chemical synthesis and extraction from medical plants difficult. Microbial biotransformation through heterologous expression of glycosyltransferases offers a safe and sustainable route for its production. Despite several attempts reported in microbial hosts, the current production levels of isoquercitrin still lag behind industrial standards. RESULTS: Herein, the heterologous expression of glycosyltransferase UGT78D2 gene in Bacillus subtilis 168 and reconstruction of UDP-glucose (UDP-Glc) synthesis pathway led to the synthesis of isoquercitrin from quercetin with titers of 0.37 g/L and 0.42 g/L, respectively. Subsequently, the quercetin catabolism blocked by disruption of a quercetin dioxygenase, three ring-cleavage dioxygenases, and seven oxidoreductases increased the isoquercitrin titer to 1.64 g/L. And the hydrolysis of isoquercitrin was eliminated by three ß-glucosidase genes disruption, thereby affording 3.58 g/L isoquercitrin. Furthermore, UDP-Glc pool boosted by pgi (encoding glucose-6-phosphate isomerase) disruption increased the isoquercitrin titer to 10.6 g/L with the yield on quercetin of 72% and to 35.6 g/L with the yield on quercetin of 77.2% in a 1.3-L fermentor. CONCLUSION: The engineered B. subtilis strain developed here holds great potential for initiating the sustainable and large-scale industrial production of isoquercitrin. The strategies proposed in this study provides a reference to improve the production of other flavonoid glycosides by engineered B. subtilis cell factories.


Assuntos
Engenharia Metabólica , Quercetina , Quercetina/análogos & derivados , Quercetina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Difosfato de Uridina/metabolismo
4.
Microbiology (Reading) ; 170(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38602388

RESUMO

Since the 1980s, chromosome-integration vectors have been used as a core method of engineering Bacillus subtilis. One of the most frequently used vector backbones contains chromosomally derived regions that direct homologous recombination into the amyE locus. Here, we report a gap in the homology region inherited from the original amyE integration vector, leading to erroneous recombination in a subset of transformants and a loss-of-function mutation in the downstream gene. Internal to the homology arm that spans the 3' portion of amyE and the downstream gene ldh, an unintentional 227 bp deletion generates two crossover events. The major event yields the intended genotype, but the minor event, occurring in ~10 % of colonies, results in a truncation of ldh, which encodes lactate dehydrogenase. Although both types of colonies test positive for amyE disruption by starch plating, the potential defect in fermentative metabolism may be left undetected and confound the results of subsequent experiments.


Assuntos
Bacillus subtilis , Cromossomos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Mutação , Deleção de Sequência
5.
Biotechnol J ; 19(4): e2300614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581093

RESUMO

Poly-γ-glutamic acid (γ-PGA) is a microbial-derived polymer with molecular weight (Mw) from 104 to 107 Da, and the high-Mw (> 7.0 × 105 Da) or ultra-high-Mw (> 5.0 × 106 Da) γ-PGA has important application value as a tissue engineering material, as a flocculant, and as a heavy metal remover. Therefore, how to produce these high-Mw γ-PGAs with low cost and high efficiency has attracted wide attention. In this study, a γ-PGA producer was isolated from the natural environment, and identified and named Bacillus subtilis GXD-20. Then, the ultra-high-Mw (> 6.0 × 106 Da) γ-PGA produced by GXD-20 was characterized. Interestingly, GXD-20 could produce γ-PGA at 42°C, and exhibited a γ-PGA titer of up to 22.29 ± 0.59 g L-1 in a 5-L fermenter after optimization of the fermentation process. Comparative genomic analysis indicated that the specific protein sequence and subcellular localization of PgdS (a γ-PGA-degrading enzyme) were closely related to the ultra-high-Mw of γ-PGA. Transcriptomic analysis revealed that the high γ-PGA titer at 42°C was mainly related to the high expression of genes encoding enzymes for sucrose transportation and utilization, nitrogen transportation, endogenous glutamate synthesis, and γ-PGA synthesis. These results provide new insights into the production of ultra-high-Mw γ-PGA by Bacillus at high temperatures.


Assuntos
Bacillus subtilis , Ácido Glutâmico , Ácido Poliglutâmico/análogos & derivados , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ácido Glutâmico/metabolismo , Peso Molecular , Ácido Poliglutâmico/genética , Ácido Poliglutâmico/metabolismo , Genômica , Fermentação
6.
BMC Microbiol ; 24(1): 125, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622505

RESUMO

γ- poly glutamic acid (γ-PGA), a high molecular weight polymer, is synthesized by microorganisms and secreted into the extracellular space. Due to its excellent performance, γ-PGA has been widely used in various fields, including food, biomedical and environmental fields. In this study, we screened natto samples for two strains of Bacillus subtilis N3378-2at and N3378-3At that produce γ-PGA. We then identified the γ-PGA synthetase gene cluster (PgsB, PgsC, PgsA, YwtC and PgdS), glutamate racemase RacE, phage-derived γ-PGA hydrolase (PghB and PghC) and exo-γ-glutamyl peptidase (GGT) from the genome of these strains. Based on these γ-PGA-related protein sequences from isolated Bacillus subtilis and 181 B. subtilis obtained from GenBank, we carried out genotyping analysis and classified them into types 1-5. Since we found B. amyloliquefaciens LL3 can produce γ-PGA, we obtained the B. velezensis and B. amyloliquefaciens strains from GenBank and classified them into types 6 and 7 based on LL3. Finally, we constructed evolutionary trees for these protein sequences. This study analyzed the distribution of γ-PGA-related protein sequences in the genomes of B. subtilis, B. velezensis and B. amyloliquefaciens strains, then the evolutionary diversity of these protein sequences was analyzed, which provided novel information for the development and utilization of γ-PGA-producing strains.


Assuntos
Bacillus subtilis , Ácido Glutâmico , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ácido Glutâmico/metabolismo , Sequência de Aminoácidos , Hidrolases/metabolismo , Ácido Poliglutâmico/genética , Genômica
7.
Proc Natl Acad Sci U S A ; 121(18): e2318666121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652747

RESUMO

In bacteria, intracellular K+ is involved in the regulation of membrane potential, cytosolic pH, and cell turgor as well as in spore germination, environmental adaptation, cell-to-cell communication in biofilms, antibiotic sensitivity, and infectivity. The second messenger cyclic-di-AMP (c-di-AMP) has a central role in modulating the intracellular K+ concentration in many bacterial species, controlling transcription and function of K+ channels and transporters. However, our understanding of how this regulatory network responds to c-di-AMP remains poor. We used the RCK (Regulator of Conductance of K+) proteins that control the activity of Ktr channels in Bacillus subtilis as a model system to analyze the regulatory function of c-di-AMP with a combination of in vivo and in vitro functional and structural characterization. We determined that the two RCK proteins (KtrA and KtrC) are neither physiologically redundant or functionally equivalent. KtrC is the physiologically dominant RCK protein in the regulation of Ktr channel activity. In explaining this hierarchical organization, we found that, unlike KtrA, KtrC is very sensitive to c-di-AMP inactivation and lack of c-di-AMP regulation results in RCK protein toxicity, most likely due to unregulated K+ flux. We also found that KtrC can assemble with KtrA, conferring c-di-AMP regulation to the functional KtrA/KtrC heteromers and potentially compensating KtrA toxicity. Altogether, we propose that the central role of c-di-AMP in the control of the K+ machinery, by modulating protein levels through gene transcription and by regulating protein activity, has determined the evolutionary selection of KtrC as the dominant RCK protein, shaping the hierarchical organization of regulatory components of the K+ machinery.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Potássio/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosfatos de Dinucleosídeos/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio/genética
8.
Microb Biotechnol ; 17(3): e14426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497275

RESUMO

Fluctuations in redox conditions in bioprocesses can alter the end-products, reduce their concentration, and lengthen the process time. Electrofermentation enables rapid metabolic modulation of biosynthesis and allows control of redox imbalances in biofilm-based fermentation processes. In this study, electrofermentation is used to boost the production of the bacterial biopolymer poly-γ-glutamic acid (γ-PGA) from Bacillus subtilis ATCC 6051. When compared to control experiments (3.3 ± 0.99 g L-1 ), the application of an electrode potential E = 0.4 V versus Ag/AgCl results in a more than two-fold increase in the production of γ-PGA (9.13 ± 1.4 g L-1 ). Using an engineered B. subtilis strain, in which γ-PGA production is driven by isopropyl ß-d-1-thiogalactopyranoside, electrofermentation improves polymer concentrations from 15.4 ± 1.5 to 23.1 ± 1.6 versus g L-1 . These results confirm that electrofermentation conditions can be adopted to increase the concentration of γ-PGA and perhaps other extracellular biopolymers in industrial strains.


Assuntos
Bacillus subtilis , Ácido Glutâmico , Ácido Poliglutâmico/análogos & derivados , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ácido Glutâmico/metabolismo , Fermentação , Biofilmes
9.
BMC Microbiol ; 24(1): 104, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539071

RESUMO

BACKGROUND: While particular strains within the Bacillus species, such as Bacillus subtilis, have been commercially utilised as probiotics, it is critical to implement screening assays and evaluate the safety to identify potential Bacillus probiotic strains before clinical trials. This is because some Bacillus species, including B. cereus and B. anthracis, can produce toxins that are harmful to humans. RESULTS: In this study, we implemented a funnel-shaped approach to isolate and evaluate prospective probiotics from homogenised food waste - sesame oil meal (SOM). Of nine isolated strains with antipathogenic properties, B. subtilis SOM8 displayed the most promising activities against five listed human enteropathogens and was selected for further comprehensive assessment. B. subtilis SOM8 exhibited good tolerance when exposed to adverse stressors including acidity, bile salts, simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and heat treatment. Additionally, B. subtilis SOM8 possesses host-associated benefits such as antioxidant and bile salt hydrolase (BSH) activity. Furthermore, B. subtilis SOM8 contains only haemolysin toxin genes but has been proved to display partial haemolysis in the test and low cytotoxicity in Caco-2 cell models for in vitro evaluation. Moreover, B. subtilis SOM8 intrinsically resists only streptomycin and lacks plasmids or other mobile genetic elements. Bioinformatic analyses also predicted B. subtilis SOM8 encodes various bioactives compound like fengycin and lichendicin that could enable further biomedical applications. CONCLUSIONS: Our comprehensive evaluation revealed the substantial potential of B. subtilis SOM8 as a probiotic for targeting human enteropathogens, attributable to its exceptional performance across selection assays. Furthermore, our safety assessment, encompassing both phenotypic and genotypic analyses, showed B. subtilis SOM8 has a favourable preclinical safety profile, without significant threats to human health. Collectively, these findings highlight the promising prospects of B. subtilis SOM8 as a potent probiotic candidate for additional clinical development.


Assuntos
Bacillus , Probióticos , Eliminação de Resíduos , Humanos , Bacillus subtilis/genética , Óleo de Gergelim , Células CACO-2 , Estudos Prospectivos , Probióticos/farmacologia
10.
BMC Plant Biol ; 24(1): 197, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500040

RESUMO

BACKGROUND: Plant microbiome confers versatile functional roles to enhance survival fitness as well as productivity. In the present study two pearl millet panicle microbiome member species Bacillus subtilis PBs 12 and Bacillus paralicheniformis PBl 36 found to have beneficial traits including plant growth promotion and broad-spectrum antifungal activity towards taxonomically diverse plant pathogens. Understanding the genomes will assist in devising a bioformulation for crop protection while exploiting their beneficial functional roles. RESULTS: Two potential firmicute species were isolated from pearl millet panicles. Morphological, biochemical, and molecular characterization revealed their identities as Bacillus subtilis PBs 12 and Bacillus paralicheniformis PBl 36. The seed priming assays revealed the ability of both species to enhance plant growth promotion and seedling vigour index. Invitro assays with PBs 12 and PBl 36 showed the antibiosis effect against taxonomically diverse plant pathogens (Magnaporthe grisea; Sclerotium rolfsii; Fusarium solani; Alternaria alternata; Ganoderma sp.) of crops and multipurpose tree species. The whole genome sequence analysis was performed to unveil the genetic potential of these bacteria for plant protection. The complete genomes of PBs 12 and PBl 36 consist of a single circular chromosome with a size of 4.02 and 4.33 Mb and 4,171 and 4,606 genes, with a G + C content of 43.68 and 45.83%, respectively. Comparative Average Nucleotide Identity (ANI) analysis revealed a close similarity of PBs 12 and PBl 36 with other beneficial strains of B. subtilis and B. paralicheniformis and found distant from B. altitudinis, B. amyloliquefaciens, and B. thuringiensis. Functional annotation revealed a majority of pathway classes of PBs 12 (30) and PBl 36 (29) involved in the biosynthesis of secondary metabolites, polyketides, and non-ribosomal peptides, followed by xenobiotic biodegradation and metabolism (21). Furthermore, 14 genomic regions of PBs 12 and 15 of PBl 36 associated with the synthesis of RiPP (Ribosomally synthesized and post-translationally modified peptides), terpenes, cyclic dipeptides (CDPs), type III polyketide synthases (T3PKSs), sactipeptides, lanthipeptides, siderophores, NRPS (Non-Ribosomal Peptide Synthetase), NRP-metallophone, etc. It was discovered that these areas contain between 25,458 and 33,000 secondary metabolite-coding MiBiG clusters which code for a wide range of products, such as antibiotics. The PCR-based screening for the presence of antimicrobial peptide (cyclic lipopeptide) genes in PBs 12 and 36 confirmed their broad-spectrum antifungal potential with the presence of spoVG, bacA, and srfAA AMP genes, which encode antimicrobial compounds such as subtilin, bacylisin, and surfactin. CONCLUSION: The combined in vitro studies and genome analysis highlighted the antifungal potential of pearl millet panicle-associated Bacillus subtilis PBs12 and Bacillus paralicheniformis PBl36. The genetic ability to synthesize several antimicrobial compounds indicated the industrial value of PBs 12 and PBl 36, which shed light on further studies to establish their action as a biostimulant for crop protection.


Assuntos
Anti-Infecciosos , Bacillus , Pennisetum , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Anti-Infecciosos/metabolismo , Genômica , Plantas/metabolismo , Peptídeos/metabolismo
11.
mBio ; 15(4): e0224823, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38477571

RESUMO

Sporulation is an important feature of the clostridial life cycle, facilitating survival of these bacteria in harsh environments, contributing to disease transmission for pathogenic species, and sharing common early steps that are also involved in regulating industrially important solvent production by some non-pathogenic species. Initial genomics studies suggested that Clostridia lack the classical phosphorelay that phosphorylates Spo0A and initiates sporulation in Bacillus, leading to the hypothesis that sporulation in Clostridia universally begins when Spo0A is phosphorylated by orphan histidine kinases (OHKs). However, components of the classical Bacillus phosphorelay were recently identified in some Clostridia. Similar Bacillus phosphorelay components have not yet been found in the pathogenic Clostridia or the solventogenic Clostridia of industrial importance. For some of those Clostridia lacking a classical phosphorelay, the involvement of OHKs in sporulation initiation has received support from genetic studies demonstrating the involvement of several apparent OHKs in their sporulation. In addition, several clostridial OHKs directly phosphorylate Spo0A in vitro. Interestingly, there is considerable protein domain diversity among the sporulation-associated OHKs in Clostridia. Further adding to the emergent complexity of sporulation initiation in Clostridia, several candidate OHK phosphotransfer proteins that were OHK candidates were shown to function as phosphatases that reduce sporulation in some Clostridia. The mounting evidence indicates that no single pathway explains sporulation initiation in all Clostridia and supports the need for further study to fully understand the unexpected and biologically fascinating mechanistic diversity of this important process among these medically and industrially important bacteria.


Assuntos
Bacillus , Histidina , Histidina Quinase/genética , Histidina Quinase/metabolismo , Histidina/metabolismo , Fosforilação , Fatores de Transcrição/metabolismo , Bacillus/metabolismo , Clostridium/genética , Clostridium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/metabolismo , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica
12.
Arch Microbiol ; 206(4): 181, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502253

RESUMO

The α-L-arabinofuranosidase enzyme plays a crucial role in the degradation of ginsenosides. In this study, we successfully cloned and expressed a novel α-L-arabinofuranosidase bsafs gene (1503 bp, 501 amino acids, 55 kDa, and pI = 5.4) belonging to glycosyl hydrolase (GH) family 51 from Bacillus subtilis genome in Escherichia coli BL21 cells. The recombinant protein Bsafs was purified using Ni2+ sepharose fastflow affinity chromatography and exhibited a specific activity of 2.91 U/mg. Bsafs effectively hydrolyzed the α-L-arabinofuranoside at C20 site of ginsenoside Rc to produce Rd as the product. The Km values for hydrolysis of pNP-α-L-arabinofuranoside (pNPαAraf) and ginsenoside Rc were determined as 0.74 and 4.59 mmol/L, respectively; while the Vmax values for these substrates were found to be 24 and 164 µmol/min/mg, respectively; furthermore, the Kcat values for these enzymes were calculated as 22.3 and 1.58 S-1 correspondingly.


Assuntos
Ginsenosídeos , Ginsenosídeos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Clonagem Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
13.
Nat Microbiol ; 9(4): 1064-1074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480901

RESUMO

Bacterial cell division requires septal peptidoglycan (sPG) synthesis by the divisome complex. Treadmilling of the essential tubulin homologue FtsZ has been implicated in septal constriction, though its precise role remains unclear. Here we used live-cell single-molecule imaging of the divisome transpeptidase PBP2B to investigate sPG synthesis dynamics in Bacillus subtilis. In contrast to previous models, we observed a single population of processively moving PBP2B molecules whose motion is driven by peptidoglycan synthesis and is not associated with FtsZ treadmilling. However, despite the asynchronous motions of PBP2B and FtsZ, a partial dependence of PBP2B processivity on FtsZ treadmilling was observed. Additionally, through single-molecule counting experiments we provide evidence that the divisome synthesis complex is multimeric. Our results support a model for B. subtilis division where a multimeric synthesis complex follows a single track dependent on sPG synthesis whose activity and dynamics are asynchronous with FtsZ treadmilling.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Peptidoglicano , Proteínas do Citoesqueleto/genética , Parede Celular
14.
J Agric Food Chem ; 72(13): 7266-7278, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38523338

RESUMO

Ginseng oligopeptides are naturally occurring small-molecule peptides extracted from ginseng that exhibit positive effects on health and longevity. However, the current industrial production of ginseng oligopeptides primarily relies on plant extraction and chemical synthesis. In this study, we proposed a novel genetic engineering approach to produce active ginseng peptides through multicopy tandem insertion (5 and 15 times). The recombinant ginseng peptides were successfully produced from engineered Bacillus subtilis with an increasing yield from 356.55 to 2900 mg/L as the repeats multiple. Additionally, an oxidative stress-induced aging model caused by H2O2 was established to evaluate whether the recombinant ginseng peptides, without enzymatic hydrolysis into individual peptides, also have positive effects on antiaging. The results demonstrated that all two kinds of recombinant ginseng peptides could also delay cellular aging through various mechanisms, such as inhibiting cell cycle arrest, suppressing the expression of pro-inflammatory factors, and enhancing cellular antioxidant capacity.


Assuntos
Bacillus subtilis , Panax , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Panax/química , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Oligopeptídeos/genética , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo
15.
Chemosphere ; 353: 141637, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462177

RESUMO

Polyaromatic benzo[a]pyrene (B[a]P) is a toxic carcinogenic environmental pollutant, and the use of microorganisms to remediate B[a]P contamination is considered to be one of the most effective strategies. However, there is still a gap in studying the metabolic remodeling of microorganisms under B[a]P stress. In this study, our systematically investigated the effects of B[a]P on the metabolism of Bacillus subtilis MSC4 based on transcriptomic, molecular and biochemical analyses. The results showed that in response to B[a]P stress, MSC4 formed more biofilm matrix and endospores, the structure of the endospores also was changed, which led to a reduction in their resistance and made them more difficult to germinate. In addition to an increase in glycolysis activity, the activities of tricarboxylic acid cycle, pentose phosphate pathway and the electron transport chain were decreased. B[a]P stress forced MSC4 to strengthen arginine synthesis, urea cycle, and urea decomposition, meanwhile, synthesize more ribonucleotides. The activity of DNA replication, transcription activities and the expression of multiple ribosomal protein genes were reduced. Moreover, all of the reported enzymes involved in B[a]P degradation showed decreased transcript abundance, and the degradation of B[a]P caused significant up-regulation of the gene expression of the acid inducible enzyme OxdC and the synthesis of acetoin. In addition, the cytotoxicity of B[a]P to bacteria was directly displayed in four aspects: increased intracellular level of reactive oxygen species (ROS), elevated cell membrane permeability, up-regulation of the cell envelope stress-sensing two-component system LiaRS, and downregulation of siderophores biosynthesis. Finally, B[a]P also caused morphological changes in the cells, with some cells exhibiting significant deformation and concavity. These findings provide effective research directions for targeted improvement the cellular activity of B[a]P-degrading strains, and is beneficial for further application of microorganisms to remediate B[a]P -contaminated soils.


Assuntos
Bacillus subtilis , Benzo(a)pireno , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Glicólise , Perfilação da Expressão Gênica , Ureia/metabolismo
16.
mSystems ; 9(4): e0022124, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38546227

RESUMO

Initiation of bacterial DNA replication takes place at the origin of replication (oriC), a region characterized by the presence of multiple DnaA boxes that serve as the binding sites for the master initiator protein DnaA. This process is tightly controlled by modulation of the availability or activity of DnaA and oriC during development or stress conditions. Here, we aimed to uncover the physiological and molecular consequences of stopping replication in the model bacterium Bacillus subtilis. We successfully arrested replication in B. subtilis by employing a clustered regularly interspaced short palindromic repeats interference (CRISPRi) approach to specifically target the key DnaA boxes 6 and 7, preventing DnaA binding to oriC. In this way, other functions of DnaA, such as a transcriptional regulator, were not significantly affected. When replication initiation was halted by this specific artificial and early blockage, we observed that non-replicating cells continued translation and cell growth, and the initial replication arrest did not induce global stress conditions such as the SOS response.IMPORTANCEAlthough bacteria constantly replicate under laboratory conditions, natural environments expose them to various stresses such as lack of nutrients, high salinity, and pH changes, which can trigger non-replicating states. These states can enable bacteria to (i) become tolerant to antibiotics (persisters), (ii) remain inactive in specific niches for an extended period (dormancy), and (iii) adjust to hostile environments. Non-replicating states have also been studied because of the possibility of repurposing energy for the production of additional metabolites or proteins. Using clustered regularly interspaced short palindromic repeats interference (CRISPRi) targeting bacterial replication initiation sequences, we were able to successfully control replication initiation in Bacillus subtilis. This precise approach makes it possible to study non-replicating phenotypes, contributing to a better understanding of bacterial adaptive strategies.


Assuntos
Bacillus subtilis , Proteínas de Ligação a DNA , Proteínas de Ligação a DNA/genética , Bacillus subtilis/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Bactérias/genética , Replicação do DNA/genética
17.
J Hazard Mater ; 470: 134132, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554510

RESUMO

The proliferation of antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) caused by antibiotic abuse has raised concerns about the global infectious-disease crisis. This study employed periodate (PI)/ferrate (VI) (Fe (VI)) system to disinfect Gram-negative ARB (Escherichia coli DH5α) and Gram-positive bacteria (Bacillus subtilis ATCC6633). The PI/Fe (VI) system could inactivate 1 × 108 CFU/mL of Gram-negative ARB and Gram-positive bacteria by 4.0 and 2.8 log in 30 min. Neutral and acidic pH, increase of PI dosage and Fe (VI) dosage had positive impacts on the inactivation efficiency of ARB, while alkaline solution and the coexistence of 10 mM Cl-, NO3-, SO42- and 20 mg/L humic acid had slightly negative impacts. The reactive species generated by PI/Fe (VI) system could disrupt the integrity of cell membrane and wall, leading to oxidative stress and lipid peroxidation. Intracellular hereditary substance, including DNA and ARGs (tetA), would leak into the external environment through damaged cells and be degraded. The electron spin resonance analysis and quenching experiments indicated that Fe (IV)/Fe (V) played a leading role in disinfection. Meanwhile, PI/Fe (VI) system also had an efficient removal effect on sulfadiazine, which was expected to inhibit the ARGs transmission from the source.


Assuntos
Bacillus subtilis , Desinfecção , Ferro , Ferro/química , Desinfecção/métodos , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Desinfetantes/farmacologia , Antibacterianos/farmacologia , Genes Bacterianos/efeitos dos fármacos
18.
Microb Pathog ; 190: 106616, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492826

RESUMO

Root rot is a common disease, that severely affects the yield and quality of alfalfa. Biocontrol is widely used to control plant diseases caused by pathogenic fungi, however, biocontrol strains for alfalfa root rot are very limited. In this study, a Bacillus subtilis CG-6 strain with a significant biocontrol effect on alfalfa root rot was isolated. CG-6 secretes antibacterial enzymes and siderophore, phosphate solubilization and indoleacetic acid (IAA). The inhibition rate of strain CG-6 against Fusarium oxysporum was 87.33%, and it showed broad-spectrum antifungal activity. Inoculation with CG-6 significantly reduced the incidence of alfalfa root rot, the control effect of greenhouse cultivation reached 58.12%, and CG-6 treatment significantly increased alfalfa plant height, root length, fresh weight, and dry weight. The treatment with CG-6 significantly increased the levels of antioxidant enzymes (catalase, peroxidase, superoxide dismutase, and lipoxygenase) in alfalfa leaves by 15.52%-34.03%. Defensive enzymes (chitinase and ß-1,3-glucanase) increased by 24.37% and 28.08%, respectively. The expression levels of regulatory enzyme genes (MsCAT, MsPOD, MsCu, Zn-SOD1, MsCu, Zn-SOD2, MsCu, Zn-SOD3, and MsLOX2) and systemic resistance genes (MsPR1, MsPDF1.2, and MsVSP2) increased by 0.50-2.85 fold, which were higher than those in the pathogen treatment group. Therefore, CG-6 could be used as a potential strain to develop biopesticides against alfalfa root rot.


Assuntos
Bacillus subtilis , Fusarium , Medicago sativa , Doenças das Plantas , Raízes de Plantas , Medicago sativa/microbiologia , Bacillus subtilis/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Fusarium/crescimento & desenvolvimento , Antibiose , Ácidos Indolacéticos/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/microbiologia , Quitinases/metabolismo , Agentes de Controle Biológico , Superóxido Dismutase/metabolismo , Antifúngicos/farmacologia
19.
Vet Med Sci ; 10(3): e1410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501344

RESUMO

BACKGROUND: Probiotic strains have the potential to modulate immune responses, reduce intestinal inflammation, normalize intestinal mucosal function and decrease allergic reactions. OBJECTIVE: This study aimed to investigate the effect of oral probiotic supplements containing Bacillus subtilis and Bacillus coagulans spores on clinical symptoms, haematological factors and immune responses to allergic contact dermatitis in dogs induced by dinitrochlorobenzene (DNCB). METHODS: DNCB was injected subcutaneously into the scapular region of 20 healthy adult dogs of both sexes, divided into four groups, to induce experimental allergic contact dermatitis. Dogs in Group 1 received food without probiotics or medication. Oral prednisolone was administered to Group 2 for 30 days at a dosage of 0.25 mg/kg every other day. The dogs in Group 3 were treated with a combination of oral prednisolone and probiotics. The dogs in Group 4 were fed daily with a mixture of 109 B. subtilis and B. coagulans bacteria for 30 days. The immune system responses and related gene expression were analysed in the treated animals. RESULTS: The administration of probiotics for 30 days resulted in a reduction in clinical symptoms and duration of wound repair. The probiotics treatment also significantly increased the serum bactericidal effects against Staphylococcus aureus and Escherichia coli. It enhanced both the classic and alternative activity of the complement, as well as lysozyme activity. Additionally, the probiotics led to higher total immunoglobulin levels and significant reductions in anti-trypsin and C-reactive protein levels. Furthermore, the expression of IgE, induction of interferon-gamma and IL-4 genes were also reduced. CONCLUSIONS: According to the results, B. subtilis and B. coagulans can be further investigated as a viable alternative to corticosteroids in treating allergic contact dermatitis in dogs.


Assuntos
Bacillus coagulans , Dermatite Alérgica de Contato , Doenças do Cão , Masculino , Feminino , Cães , Animais , Bacillus subtilis/genética , Dinitroclorobenzeno , Esporos Bacterianos/genética , Dermatite Alérgica de Contato/terapia , Dermatite Alérgica de Contato/veterinária , Prednisolona , Doenças do Cão/induzido quimicamente , Doenças do Cão/terapia
20.
J Microorg Control ; 29(1): 9-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508764

RESUMO

Mechanical bead disruption is an efficient DNA extraction method from spore cells for subsequent quantification of the spore population by quantitative polymerase chain reaction(qPCR). In this study, to validate spore DNA localization and extraction efficiencies, the fractionated DNA included the total DNA(tDNA)extracted from spore cells and intracellular(iDNA)and extracellular DNA(eDNA)extracted from fractionated spores through chemical decoating and alkaline lysis buffers, each followed by bead disruption. Furthermore, alkaline lysis buffer-treated spore cells were intensively washed three and five times after each centrifugation to determine how the amount of DNA is affected by repeated centrifugation. This process was achieved through fractionated spore pellet and suspension treatments with propidium monoazide xx(PMAxx)before mechanical bead disruption. Three fractionated and extracted DNAs were assessed with qPCR. The amount of eDNA was higher than that of iDNA, and closer to tDNA levels in the qPCR assay. These results indicted the following: 1)amount of eDNA was more than iDNA and responsible for majority of amount of tDNA through the combination method involving alkaline lysis buffer and bead disruption, 2)lysis buffer partially eliminated the eDNA fragments through multiple washing steps, but it was not largely independent of the number of times centrifugation was performed.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Reação em Cadeia da Polimerase em Tempo Real , Bacillus subtilis/genética , Esporos Bacterianos/genética , DNA Bacteriano/genética , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...